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1 Introduction
The following is basically taken from the forthcoming book Confidence, Likeli-
hood, Probability by Nils Lid Hjort and myself.

In 1922 R.A. Fisher (of the Fisher distribution) introduced the likelihood
function and a whole theory of statistical inference based on likelihood. The
likelihood function is defined in parametric statistical model, such as the lin-
ear regression model with independent and normally distributed errors with
the same variance σ2. The parameter of this model is then the vector (β, σ)
where β is the vector of regression coefficients. Fisher suggested to estimate
the parameter, including β, by maximizing the likelihood function, i.e. by the
maximum likelihood estimator (MLE), and he found that that for large samples
its distribution is approximately normally distributed around the parameter
with variance-covariance matrix equal to the inverse of the matrix of second
derivatives of the likelihood function at its top.

In this lecture we will take a rather informal look at this theory, with em-
phasis on its intuition and logic, but not attempting to give formal proofs. Most
effort will be to appreciate the large sample properties of the maximum like-
lihood estimator and the deviance function D = −2 log(L(θ)/L(θ̂) where L is
the likelihood function and L(θ̂) is its maximum. This log likelihood ratio is an
important tool in hypothesis testing and in calculating confidence regions.

Large sample properties are investigated as various limits as the sample size
n → ∞. The two most important limit concepts in statistics are convergence
in probability and convergence in distribution or law. A sequence of stochastic
variables Yn n = 1, · · · ,∞ converges in probability to a if P (|Yn − a| < ε)→ 0
for all ε > 0. This is denoted Yn →p a. The other type of convergence is denoted
Yn →d Y where Y is the stochastic variable having the limit distribution for Yn.
The simple Central limit theorem is then

√
n(X̄n − µ) →d Z when X̄n is the

mean of n independent observations from a distribution with mean (expected
value) µ and variance σ2 = 1. See Wooldrige (2010).

1



2 Likelihood methods
Suppose data Y stem from some parametric model with joint density f(y, θ),
with θ = (θ1, . . . , θp) an unknown parameter vector belonging to an appropriate
parameter set Ω in Rp. Thhis is the simultaneous density for the full data set.
Quite often the data are of the type Y1, . . . , Yn, with these being independent,
in which case

f(y, θ) = f1(y1, θ) · · · fn(yn, θ)

in terms of density fi for Yi. These may also encompass covariate information,
say vector xi associated with Yi, in which case the notation fruitfully may be
modified to f(yi | xi, θ), with the interpretation that this is the conditional
density of Yi given xi.

The likelihood function L(θ) is simply the joint density, but now viewed as
a function of the parameter vector for given data values, say for the observed
Y = y. It is in several respects more convenient to work with the log-likelihood
function

`(θ) = logL(θ) = log f(y, θ) (1)

rather than directly with the likelihood function itself. Sometimes we use
`n(θ) = logLn(θ) to emphasise in the notation that the functions are defined in
terms of the first n data points in a sequence. Technically speaking these defini-
tions allow even artificial models and likelihood functions but usually one rules
out such situations by insisting on at least a mild amount of regularity, viewed
as smoothness in θ, but not necessarily in y. Thus declaring that Y is N(θ, 1)
when θ is rational but a N(θ, 2) when θ is irrational, for example, arguably does
define a statistical model, but it would fall outside what we would be willing to
seriously consider.

The maximum likelihood estimator is the value θ̂ of the parameter vector
that maximises the likelihood function (or, equivalently, the log-likelihood func-
tion), for the observed data. When required we make the distinction between
the estimator, i.e. the random function θ̂ = θ̂(Y ), and the concrete estimate,
i.e. θ̂obs = θ̂(yobs), where yobs is the observed outcome of Y . As a general
and numerically convenient estimation recipe the maximum likelihood principle
enjoys various good properties, see Lehmann(1983, ch. 6)and Claeskens and
Hjort (2008, ch. 2), for example, in addition to what is briefly reviewed below.
Among these good and convenient properties is invariance – with respect to
both data transformation and parameter transformation. Thus if Y ∗ = T (Y )
is a one-one data transformation, such as taking the logarithm of positive data,
leading to a likelihood function L∗(θ) for the Y ∗ data, then L∗(θ) = L(θ) and
thus the maximum likelihood estimator of θ remains the same (see Exercise ??.
Secondly, if γ = g(θ) is a one-one parameter transformation (featuring compo-
nent transformations γj = gj(θ) for j = 1, . . . , p), then the maximum likelihood
estimator of γ is simply γ̂ML = g(θ̂ML) (see again the exercise just pointed to).

The main theorem about the maximum likelihood estimator is that it con-
verges in distribution as the sample size increases to a multinormal and with
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an identifiable variance matrix agreeing with that dictated by the Cramér–Rao
lower bound for unbiased estimators, which is the inverse of J in ?? below,
see Pawitan (2001). To put up the required formal statement let us first con-
sider the so-called i.i.d. situation, where observations Y1, Y2, . . . are independent
and identically distributed, stemming from some common density f(y, θ), as-
sumed to have two derivatives with respect to the p components of θ in at
least a neighbourhood around the prospective true parameter value θ0, ex-
plicitly assumed here to be an inner point of the parameter space. Consider
u(y, θ) = ∂ log f(y, θ)/∂θ, the so-called score function with components uj(y, θ)
for j = 1, . . . , p. These have zero means, when inserting a random Yi from the
f(y, θ) distribution, cf. Exercise ??, and we assume that the score function has
a finite variance matrix

J(θ) = Varθ u(Y, θ) = −Eθ
∂2 log f(Y, θ)

∂θ∂θt
(2)

of full rank under the true value θ0 (to see why the two matrices here are
identical, see the exercise just mentioned).

Under mild regularity conditions, basically that the true parameter value is
an inner point in the parameter space, the log-likelihood surface is approximately
quadratic near its optimum. This property drives various further important
properties pertaining to the maximum likelihood estimator, profile-versions of
the log-likelihood function, the deviance statistic, etc. As such the following
result may be seen as the canonical ‘master lemma’. Its use lies also in seeing
how similar results may be reached along the same line of arguments in more
general situations.

Lemma 1 (the canonical quadratic approximation) In the i.i.d. situation
described above, let θ0 denote the true parameter, assumed to be an inner point
of the parameter region, with J = J(θ0) of (??) having full rank. Consider the
random function

An(s) = `n(θ0 + s/
√
n)− `n(θ0) with s ∈ Rp, (3)

with `n denoting the log-likelihood function based on the first n observations.
Then, under mild further regularity conditions, we have

An(s)→d A(s) = stU − 1

2
stJs, where U ∼ Np(0, J). (4)

Figure ?? gives an illustration, depicting five realisations in a binomial situation
with n = 100 and p0 = 0.333. Note the near quadratic shape of each realized
An, and thus locally the near quadratic shape of each realized log-likelihood.
Such near quadratic functions provides quite accurate approximations by a two-
term Taylor expansion. The so-called first order asymptotic likelihood theory,
which we shall take a look on, is actually a study of this Taylor approximation
of the log-likelihood, and the distribution of its first term.

We note that An(s) is only defined as long as θ0 + s/
√
n is inside the pa-

rameter range, which in this binomial example means p0 + s/
√
n inside (0, 1);
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Figure 1: Five realisations of the random An(·) function, in a binomial situation
with n = 100 and p0 = 0.333. The five maximisers s0,j , tagged in the figure,
corresponds to five versions of

√
(p̂j − p0), with p̂j the five maximum likelihood

estimates.

4



but there is no real trouble since An(s) for a given s exists for all large enough
n. In particular the limit process A(s) is really defined over all of Rp. In the
lemma we have merely specified that there is convergence in distribution for
each fixed s. This might be strengthened to so-called functional convergence,
but that takes us too far afield.

We note that different sets of precise regularity conditions manage to secure
conclusion (??), but we choose not to go into these details here. The proof we
give now is meant to give the essential ideas rather than the full story. For sets
of sufficient conditions and full proofs, along with general guidelines for reaching
analogous statements in similar problems, see e.g. Hjort and Pollard (1993)
Lehmann and Romano (2005)

Proof 1 A two-term Taylor expansion leads to

An(s) = stUn −
1

2
stJns+ rn(s),

in which

Un = `′n(θ0)/
√
n = n−1/2

n∑
i=1

u(Yi, θ0), Jn = −`′′n(θ0)/n = −n−1
n∑
i=1

∂2 log f(Yi, θ0)

∂θ∂θt

(5)
and rn(s) a remainder term. Recall that u(Yi, θ0) = ∂

∂θ log f(Yi, θ0) is the in-
dividual score function. Here Un →d U ∼ Np(0, J) by the (multi-dimensional)
central limit theorem and Jn →p J by the (multi-dimensional) law or large
numbers, see e.g. Lehmann (1999); that the matrices involved are the same is
precisely identity (??). The task of the implied mild extra regularity conditions
is to ensure that the rn(s)→p 0. For relevant details concerning such functional
convergence see e.g. Hjort and Pollard (1993)

Theorem 1 (normal approximation for the maximum likelihood estimator)
In the i.i.d. situation worked with above, let θ̂n be the maximum likelihood es-
timator based on the first n observations. If the model holds, with θ0 the true
parameter, being an inner point of the parameter space, and with J(θ0) being of
full rank, then under mild further regularity assumptions we have

√
n(θ̂n − θ0)→d Np(0, J(θ0)−1) (6)

as the sample size n tends to infinity.

There are again different sets of precise regularity assumptions that guarantee
result (??); see e.g. Hjort and Pollard (1993). The present point is to see how
easily the conclusion flows from the ‘master lemma’, with a mild modicum of
regularity.

Proof 2 The crux of the proof is that

An →d A ought to imply arg maxs(An)→d arg maxs(A);
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securing this step is indeed the business of the mild extra regularity alluded
to. For relevant details see e.g. Hjort and Pollard (1993). With s =

√
n(θ̂ −

θ0) arg max(An) =
√
n(θ̂n − θ0) and arg max(A) = J−1U , which is zero-mean

multinormal with variance matrix J−1JJ−1 = J−1.

Rather importantly, results (??)–(??) continue to hold also when the Yi are
independent but stemming from non-identical distributions, e.g. in a regression
context where Yi has density of the form f(y | xi, θ) for some covariate vector
xi. In that case, we may define

Jn(θ) = n−1
n∑
i=1

J∗i (θ), with J∗i (θ) = Varθ ui(Yi, θ) = −Eθ
∂2 log f(Yi | xiθ)

∂θ∂θt
,

and (??)–(??) hold with J = J(θ0) the limit of J∗n(θ0) and under some mild extra
regularity conditions. Essentially, the line of argument used for Theorem ??
above goes through in this more general setting, with appropriate assumptions
of the Lindeberg kind to secure

Un = `′n(θ0)/
√
n = n−1/2

n∑
i=1

∂ log f(Yi | xi, θ0)

∂θ
→d U ∼ Np(0, J)

and Jn →p J ; see e.g. Hjort and Pollard (1993) or Hjort and Claeskens (2003a).
There are three favourable aspects to the consequent approximation to the

distribution of θ̂, for a given large or moderately large sample size:

(a) The estimator is approximately unbiased – to be more pedantically correct,
its exact distribution is close to a distribution for which the bias Eθ( θ̂−θ)
is smaller in size than 1/

√
n; it is actually of order O(1/n), under mild

conditions.

(b) Its distribution is approximately multinormal – hence distributions of single
components θ̂j and of linear combinations are approximately normal; this
makes it relatively easy to construct confidence intervals and tests with
coverage and significance levels close to any intended values.

(c) Its variance matrix (again, the variance matrix of a distribution close to the
exact one) is approximately equal to J(θ0)−1/n – which is identical to the
guaranteed lower bound for unbiased estimators provided by the vector
version of the Cramér–Rao theorem (see e.g. Lehmann (1983); hence one
cannot hope for other estimation strategies to perform better than this,
asymptotically.

There are various caveats here, one of which is that the convergence towards
the limit distribution may be slow, and also that the implied approximation
J(θ0)/n to the variance matrix of θ̂ may need modifications and improvements,
in situations with many parameters. Various remarks and examples pertaining
to the occasionally not so sound behaviour of the maximum likelihood estimator
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for small or moderate sample sizes are offered in e.g. Lehmann (1983). Overall,
though, result (??) remains an impressively versatile result, with a string of
useful consequences for day-to-day practice of modern statistics.

For using result (??) in practice it is important to be able to combine it with
a consistent estimator of the limit distribution variance matrix. Two such, both
indeed consistent under mild regularity conditions, are

Ĵn = −n−1 ∂
2`n(θ̂)

∂θ∂θt
= −n−1

n∑
i=1

∂2 log fi(Yi, θ̂)

∂θ∂θt
and J̃n = J(θ̂).

It follows that

Bn(θ0) = n(θ̂ − θ0)tĴn(θ̂ − θ0)→d χ
2
p, (7)

under model conditions (with the same result being true if Ĵn is replaced by
J̃n, or indeed with any other consistent estimator of J(θ0)), giving us both a
possibility to test point-hypotheses of the type H0 : θ = θ0 against θ 6= θ0 (one
rejects if Bn(θ0) is larger than the appropriate χ2

p quantile), and a confidence
set enveloping the true parameter with a coverage probability converging to any
desired α level:

En = {θ : Bn(θ) ≤ Γ−1p (α)}.
Here and later Γν with inverse Γ−1ν are used for the cumulative distribution
and quantile function of the χ2 distribution. The confidence set is an ellipsoid
centred at θ̂ and with a radius going to zero with speed 1/

√
n.

For constructing such confidence regions, an alternative to Bn(θ0) of (??),
which uses the Hessian matrix Ĵn associated with the log-likelihood function, is
to use say B′n(θ0) = n(θ̂−θ0)tJ(θ0)(θ̂−θ0), with the explicit Fisher information
matrix. Again we have B′n(θ0) →d χ

2
p at the true value, so E′n = {θ : B′n(θ) ≤

Γ−1p (α)} has the same first-order asymptotic property as has En. As an easy
illustration of what these two approaches may mean, take Y ∼ Bin(n, p) (the
binomial distribution); here the En and E′n methods amount to respectively

√
n|p̂− p|

{p̂(1− p̂)}1/2
≤ Γ−11 (α)1/2 and

√
n|p̂− p|

{p(1− p)}1/2
≤ Γ−11 (α)1/2.

There are arguments supporting the view that using the observed rather than
the expected information tends to be the better choice; see e.g. Efron and Morris
(1978).

Example 1 Normal linear regression

The linear regression model is among the most successful and widely used
tools of applied statistics. Its prototypical version is that of y = a+ bx+ noise,
associated with a scatterplot of (xi, yi) points. Here we go straight to the more
general case of linear multiple regression, where observation Yi is linked to a
covariate vector xi = (xi,1, . . . , xi,p)

t in the fashion of

Yi = xtiβ + εi = xi,1β1 + · · ·+ xi,pβp + εi for i = 1, . . . , n.
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The error terms εi are taken as i.i.d. and N(0, σ2). In compact matrix form we
may write

Y ∼ Nn(Xβ, σ2In),

where the observation vector Y is n × 1, the covariate matrix X is n × p, the
regression coefficient vector β is p×1, and In denotes the n×n identity matrix.
The model has p+1 unknown parameters, and the log-likelihood function is seen
to be

`n(β, σ) = −n log σ − 1

2
(1/σ2)Q(β)− 1

2
n log(2π)

in terms of

Q(β) =

n∑
i=1

(Yi − xtiβ)2 = ‖Y −Xβ‖2.

The maximum likelihood estimator of β is identical to the least sum of squares
estimator

β̂ = arg min(Q) = (XtX)−1XtY, leading to Q0 = min
β
Q(β) =

n∑
i=1

(Yi − xtiβ̂)2,

where we assume that X has full rank p. The maximum likelihood estimator
of σ is seen to be σ̂ = (Q0/n)1/2. For this well-behaved model one knows the
exact distributions of all relevant quantities, without the need of Theorem ?? and
other approximations; thus β̂ ∼ Np(β, σ

2Σ−1n /n), where Σn = n−1
∑n
i=1 xix

t
i,

and β̂ is stochastically independent of Q0 ∼ σ2χ2
n−p, see e.g. It is nevertheless

of interest to see how the normal approximations apply here, and taking two
derivatives of the log-likelihood functions leads to

Jn(β, σ) =
1

σ2

(
Σn 0
0 2

)
,

Thus the large-sample spirit of Theorem ?? gives a perfect match for the distri-
bution of β̂ and the approximation N(0, 12 ) to that of

√
n{(χ2

n−p/n)1/2 − 1}.

3 Focus parameters and profile likelihoods
“How odd it is that anyone should not see that all observation must be for or
against some view if it is to be of any service.” Indeed there is quite often a one-
dimensional focus parameter of particular interest, as dictated by the experiment
conducted and the relevant phenomena studied, and hence conforming with this
particular view of Charles Darwin’s. Let

ψ = a(θ1, . . . , θp)

be such a parameter in focus, e.g. one of the θj component parameters but more
generally a function of the full model. It follows from the comments above that
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its maximum likelihood estimator is ψ̂ML = a(θ̂ML). Its limit distribution is
easily found via the so-called delta method; in general,

√
n(θ̂ − θ0)→d Z implies

√
n{a(θ̂)− a(θ0)} →d c

tZ =

p∑
j=1

cjZj ,

in which

c = ∂a(θ0)/∂θ, i.e. cj = ∂a(θ0)/∂θj for j = 1, . . . , p. (8)

This holds provided merely that a(θ) has smooth first order derivatives in the
p parameters at θ0. Since Z in this case is multinormal, we have

√
n(ψ̂ − ψ0)→d c

tZ ∼ N(0, κ2) where κ2 = ctJ(θ0)−1c, (9)

say. Hence we have an easy to use general large-sample recipe for any focus
parameter ψ = a(θ) – it may be estimated as ψ̂ = a(θ̂), and confidence intervals
and tests for one- or two-sided hypotheses may be drawn from

√
n(ψ̂ − ψ)/κ̂→d N(0, 1), (10)

with κ̂ any consistent estimator of κ.
The ψ̂ estimator also maximises the profile likelihood

Lprof (ψ) = max{L(θ) : a(θ) = ψ},

often most conveniently studied and computed via the log-profile-likelihood, say

`n,prof (ψ) = max{`n(θ) : a(θ) = ψ}. (11)

Conceptually and operationally it is often convenient to carry out a suitable
reparametrisation, if necessary, say from (θ1, . . . , θp) to (ψ, χ1, . . . , χp−1), mak-
ing the focus parameter the first component of the new parameter vector. Then

`n,prof (ψ) = max
χ

`n(ψ, χ) = `n(ψ, χ̂(ψ)),

with χ̂(ψ) the maximum likelihood estimator in the the (p − 1)-dimensional
model that fixes ψ.

Example 2 The normal model for i.i.d. data

Let Y1, . . . , Yn be independent and identically distributed (i.i.d.) from the nor-
mal distribution with mean and standard deviation parameters µ and σ, which
we write as N(µ, σ2). Then from the Gaußian density formula and with a little
algebra the log-likelihood function is

`n(µ, σ) = −n log σ − 1

2
(1/σ2){Q0 + n(Ȳ − µ)2} − 1

2
n log(2π)
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in terms of average Ȳ = n−1
∑n
i=1 Yi and sum of squares Q0 =

∑n
i=1(Yi− Ȳ )2.

This is seen to be maximised for

µ̂ML = Ȳ and σ̂ML = (Q0/n)1/2. (12)

The log-profile likelihood `n,prof,2(σ) for σ is

max
all µ

`n(µ, σ) = `n(µ̂(σ), σ) = −n log σ − 1

2
(1/σ2)Q0 −

1

2
n log(2π), (13)

where µ̂(σ) is the maximiser of `n(µ, σ) for given σ, but where one actually finds
that µ̂(σ) = Ȳ , irrespective of σ. The situation is different when it comes to the
log-profile likelihood for µ, where `n(µ, σ) for given µ is maximised for

σ̂(µ)2 = Q0/n+ (Ȳ − µ)2 = σ̂2
ML{1 + (Ȳ − µ)2/σ̂2

ML}.

This leads to log-profile likelihood

`n,prof,1(µ) = −n log σ̂(µ)− 1

2
n− 1

2
n log(2π) = −1

2
n log{1+(Ȳ −µ)2/σ̂2

ML}+K.,
(14)

where K indicates terms not depending on the model parameters.
For a third example, let the focus parameter be the normalised mean ψ =

µ/σ. Its log-profile likelihood becomes

`n,prof,3(ψ) = max
σ

`n(σψ, σ) = `n(σ̂(ψ)ψ, σ̂(ψ)),

where σ̂(ψ) is the minimiser of

n log σ +
1

2
(1/σ2){Q0 + n(Ȳ − σψ)2}

for given ψ; see Exercise ??.

The main theorem about the log-profile likelihood is as follows. Its content
is most expediently expressed as a statement about the random quantity

Dn(ψ) = 2{`n,prof (ψ̂)− `n,prof (ψ)}. (15)

We term it the profile deviance, for the focus parameter ψ in question, and
may view it both as a random curve, which we often also wish to display in a
diagram, and as a random variable for a given ψ value. Note that Dn is the
‘twice log-likelihood-ratio statistic’ for testing H0 : ψ = ψ0 (under which the
parameter dimension is p − 1) against ψ 6= ψ0 (when the parameter dimension
is p), in that

Dn(ψ0) = 2 log
maxall θ Ln(θ)

maxθ : a(θ)=ψ0
Ln(θ)

= 2{`n(ψ̂, χ̂)− `n(ψ0, χ̂(ψ0))}.
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Theorem 2 (chi-squared approximation for the deviance) Under condi-
tions of the model and those described for Theorem ??, and under the true
parameter θ0 (so that the true value of the one-dimensional parametr ψ is
ψ0 = a(θ0)), assumed to be an inner point in the parameter space, we have

Dn(ψ0) = 2{`n,prof (ψ̂)− `n,prof (ψ0)} →d χ
2
1. (16)

Results of this type are sometimes referred to generically as ‘Wilks theorems’.
For proofs of variations of statement (??), with appropriate regularity condi-

tions, see e.g. Pawitan (2001). The following sketch, which may be completed
using finer details from Pawitan, will hopefully be instructive.

Proof 3 The essence of the proof is that the log-likelihood function is approxi-
mately a quadratic function near its optimum, as formalised via the An →d A
convergence result of Lemma ??, and that we are examining the maximum of this
function under a linear type side constraint. This is since any smooth ψ = a(θ)
may be locally linearised to the required degree of approximation, cf. the dis-
cussion around (??) involving c = ∂a(θ0)/∂θ of (??). It is actually sufficient
to examine the case of ψ = ctθ, for suitable c = (c1, . . . , cp)

t (we may even
reparametrise to have c = (1, 0, . . . , 0)t to have ψ appearing as the first compo-
nent in the parameter vector).

To see how this works out we start with a second order Taylor expansion of
the log-likelihood function, say

`n(θ) = `n(θ̂n)− 1

2
n(θ − θ̂n)tĴn(θ − θ̂n) + εn(θ),

with εn(θ) the remainder term, typically of order n−3/2. A separate investigation
reveals that a quadratic form Q(x) = (x − a)tB(x − a), where B is symmetric
and positive definite, when examined under the side condition that ctx = d, is
minimised for x0 = a + {(d − cta)/(ctB−1c)}B−1c, with consequent minimum
value equal to (d− cta)2/ctB−1c; see Exercise ??. It follows that

`n,prof (ψ0) = `n(θ̂n)−1

2
nmin{(θ−θ̂n)tĴn(θ−θ̂n) : ctθ = ψ0}+δn = `n,prof (ψ̂)−1

2
n

(ψ0 − ctθ̂n)2

ctĴ−1n c
+δn,

(17)
with δn the implied remainder term. This leads to

Dn(ψ0) =
n(ψ̂ − ψ0)2

ctĴ−1n c
− 2δn converging to Z2 =

(ctJ−1U)2

ctJ−1c

provided sufficient regularity is in place for δn to tend to zero in probability; see
again the references pointed to above for instances of such sets of conditions.
This proves statement (??) in that ctJ−1U is zero-mean normal with variance
ctJ−1c; cf. also result (??).
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4 Sufficiency and the likelihood principle
The likelihood function and a whole theory of statistical inference based on it
was introduced by Fisher (1922). Sufficiency and ancillarity are two central
concepts.

A statistics S = S(Y ) based on data Y is sufficient when it holds all the
information there is in the data regarding the model parameter θ. In formal
terms the conditional distribution of Y given S is then free of θ,

fjoint(y, θ) = fY |S(y|s)fS(s, θ) (18)

where the conditional distribution fY |S is the same for all parameter values. In
view of the model, the data provides no extra information regarding θ on top of
a sufficient statistic S. It is therefore obvious that any inference must be based
on a sufficient statistic. This is the sufficiency principle.

The whole data is sufficient, but it might be reduced to a lower dimensional
sufficient statistic. If say Y is a sample from the N(µ, σ2), the mean and the
empirical variance, S = (Ȳ , V ), make up a sufficient statistic. Any one-to-one
transformation of S is also sufficient. But S = (Ȳ , V ) cannot be reduced further
without loosing its property. The mean alone is for example not sufficient. A
sufficient statistic S is minimal sufficient if it is a function of any other sufficient
statistic. In that case a statistic g(S) is not sufficient if the function g is not
one-to-one.

The likelihood is sufficient. From (??) it is clear that the likelihood based
on the whole data is proportional to that based on any sufficient statistic. It is
thus minimal sufficient. Inference in a parametric model must consequently be
based on the likelihood function. This is the weak likelihood principle.

Ancillarity is the opposite concept of sufficiency. A statistic T is ancillary
when its distribution does not depend on the model parameter θ. In that case

fjoint(y, θ) = fY |T (y|t, θ)fT (t). (19)

The likelihood is thus proportional to the conditional likelihood given the ancil-
lary statistic, and inference should be conditional on T . This is the condition-
ality principle. A statistic could also be ancillary for a specific parameter, say
σ. Then

fjoint(y, θ) = fY |T (y|t, ψ)fT (t, σ),

when θ = (ψ, σ). It is then often good reasons to carry out the inference in the
conditional model given T . Whether this always should be done is debatable.

The sufficiency principle and the conditionality principle imply the strong
likelihood principle (Birnbaum 1962). It sais that all the evidence the observed
data provides is embodied in the conditional likelihood given an ancillary statis-
tic. If for example two experiments, both with model parameter θ lead to the
same likelihood function, the inference should then be the same in the two
cases. One could actually regard the two experiments A and B as being parts
of a larger mixture experiment where a fair coin is tossed to determine whether
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A or B should be carried out. The outcome of the toss is clearly an ancillary
statistic. By the strong likelihood principle inference should be based on the
conditional likelihood given this ancillary statistic. Since the two experiments
yielded the same likelihood function, this is the conditional likelihood function
in the mixture experiment.

According to the strong likelihood principle, the inference is to be based
on the observed likelihood function, regardless of what the model or the data
generating process is, provided it leads to the likelihood. This is a controversial
principle.

Example 3 In a binomial experiment of n = 20 Bernoulli trials all with success
probability p the number of successes is y = 13. In another experiment Bernoulli
trials are carried out until y = 13 successes are obtained. It so happens that in
the second experiment the total number of trials came out n = 20. The second
experiment is called negative binomial since the number of failures N − 15 is
negatively binomial with parameter 1− p. Both experiments yield the likelihood
function p13(1 − p)7 when constant terms are removed. Suppose the purpose
of both experiments was to test whether p ≤ 1/2 against p > 1/2. With half-
correction, the p-value is 0.095 in the binomial experiment and 0.108 in the
negative binomial experiment. They are different despite the likelihoods being
identical.

The Bayesian build on the strong likelihood principle. It is only the like-
lihood that enters their posterior distribution. Contextual information, such
as how sampling is carried out, is of no consequence to the Bayesian on top
of the observed likelihood function. The frequentist builds his inference both
on the actual outcome of the experiment, as expressed in the likelihood func-
tion, and on the contextual evidence available. His p-value is the probability
under the null hypothesis of obtaining at least as radical results as observed.
His hypothetical series of repeated experiments depends on the protocol of the
experiment. As p-values, confidence intervals and confidence distributions will
depend on both the observed data and the contextual evidence in the protocol
of the experiment, both pieces of evidence is taken into account. Is the frequen-
tist statistician breaching the strong likelihood principle? We would argue not,
since the observed data provides us with one piece of information as expressed
in the observed likelihood, while the contextual evidence comes in addition.
The contextual evidence must obviously be consistent with the likelihood, but
is not entirely contained in the observed likelihood. The likelihood principle is
discussed in Berger and Wolpert (1988).

5 Exercises

1. Invariance properties for maximum likelihood: Suppose a data vector Y
has joint density function fjoint(y, θ) in terms of a parameter vector θ.
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(a) Let Y ∗ = T (Y ) be a one-one transformation of data (such as taking
the logarithm of all data points). Show that Y ∗ has density

f∗joint(y
∗, θ) = fjoint(T

−1(y∗), θ)
∣∣∣∂T−1(y∗)

∂y∗

∣∣∣
and that the maximum likelihood estimator θ̂ remains the same, whether
calculated on the basis of Y or Y ∗.

(b) Show invariance with respect to parameter transformation, and that
τ̂ML = t(θ̂ML) when τ = t(θ) for a function t.

2. The Fisher information matrix: Let the dimension of the parameter be
p = 1. Show that the score functionu(Y, θ) = ∂

∂θ `(θ, Y ) has mean zero.
The trick is to differentiate 1 =

´
f(y, θ)dy with respect to θ, inside the

integral. Smoothness makes this ok. This yields
ˆ
u(y, θ)f(y, θ)dy = 0

. Differentiating this last equation under the integral yields
´

∂2

∂θ2 f(y, θ)dy =
0, and thus

−
ˆ

∂2

∂θ2
`(θ, y)f(y; θ)dy =

ˆ
u(y; θ)2f(y, θ)dy = var(u(Y, θ)).

3. Profile likelihood for normalised mean parameter: Consider the normal
model N(µ, σ2) for i.i.d. data Y1, . . . , Yn, cf. Example ??, where we exhib-
ited the log-profile likelihood functions for parameters µ and σ.

(a) Let the focus parameter be ψ = µ/σ, and find the log-profile likelihood.

(b) Then consider the case of focus parameter ψ = Pr{Yi ≤ y0} = Φ((y0−
µ)/σ). Find the log-profile likelihood function.

4. Log-profile likelihood asymptotics: Verify directly the χ2
1 limits of the (pro-

file) deviance of both µ and σ in the case of Example ??.

5. Profile likelihoods for logistic regression: Consider data for n mothers and
babies where each mother is characterized by a covariate vector x and
the babies are categorized to be large, weighting more than 2.5 kg, or
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small. The covariates are mother’s weight, whether she is black or not,
and whether she is a smoker or not. For a given focus parameter of the
type p0 = Psmallbaby | x0 = H(xt0β), with x0 a given vector of covariates,
make a programme that computes and displays the log-profile likelihood
function

`n(p0) = max{`n(β) : xt0β = H−1(p0)}.

Show that H−1(p0) = log{p0/(1−p0)} when H(z) = exp z
1+exp z is the logistic

function. Simulate a data set of size n = 200 and apply your program.

6. Minimisation exercises for profile log-likelihoods: Consider a quadratic
form Q(x) = (x − a)tB(x − a), where a ∈ Rp and B is a symmetric
positive definite p× p matrix.

(a) Use e.g. Lagrange multipliers to show that the x minimising Q(x)
under the linear side constraint ctx = d is equal to

x0 = a+
d− cta
ctB−1c

B−1c.

(b) Deduce that indeed

min{(x− a)tB(x− a) : ctx = d} =
(d− cta)2

ctB−1c
.
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